Compact 3D Microfluidic Channel Structures Embedded in Glass Fabricated by Femtosecond Laser Direct Writing

نویسندگان

  • Changning Liu
  • Yang Liao
  • Fei He
  • Jiangxin Song
  • Di Lin
  • Ya Cheng
  • Koji Sugioka
  • Katsumi Midorikawa
چکیده

We demonstrate rapid fabrication of complex three-dimensional (3D) microfluidic channels with lengths up to ~6.0 cm within a tiny volume down to ~80 nl in glass substrates by femtosecond laser direct writing, which, to the best of our knowledge, is the longest microfluidic channel directly embedded in glass by femtosecond laser microprocessing. The fabrication mainly includes the following two steps: (1) formation of hollow microfluidic channels in porous glass by scanning a tightly focused femtosecond laser beam inside a porous glass immersed in water; and (2) postannealing of the fabricated porous glass sample at ~1150 °C for consolidation of the sample. The unique 3D capability of our technique allows construction of extremely compact microfluidic devices and systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria.

Phormidium, a genus of filamentous cyanobacteria, forms endosymbiotic associations with seedling roots that accelerate the growth of the vegetable seedlings. Understanding the gliding mechanism of Phormidium will facilitate improved formation of this association and increased vegetable production. To observe the gliding movements, we fabricated various microfluidic chips termed nanoaquariums us...

متن کامل

Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.

The creation of complex three-dimensional (3D) microfluidic systems has attracted significant attention from both scientific and applied research communities. However, it is still a formidable challenge to build 3D microfluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. Here, we demonstrate rapid fabrication of high-aspect-ratio microflu...

متن کامل

Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent a...

متن کامل

Femtosecond Laser 3D Fabrication in Porous Glass for Micro- and Nanofluidic Applications

The creation of complex three-dimensional (3D) fluidic systems composed of hollow microand nanostructures embedded in transparent substrates has attracted significant attention from both scientific and applied research communities. However, it is by now still a formidable challenge to build 3D microand nanofluidic structures with arbitrary configurations using conventional planar lithographic f...

متن کامل

Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing

The operation of a mid-infrared laser at 2244 nm in a Cr:ZnS polycrystalline channel waveguide fabricated using direct femtosecond laser writing with a helical movement technique is demonstrated. A maximum power output of 78 mW and an optical-to-optical slope efficiency of 8.6% are achieved. The compact waveguide structure with 2 mm length was obtained through direct femtosecond laser writing, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013